DRAFT Impact Fee Study

Prepared for: City of Foley, Alabama

June 8, 2021

4701 Sangamore Road Suite S240 Bethesda, MD (301) 320-6900 www.TischlerBise.com

[PAGE INTENTIONALLY LEFT BLANK]

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
PROPOSED METHODOLOGIES AND COST COMPONENTS	
PROPOSED IMPACT FEES	3
GENERAL LEGAL FRAMEWORK	4
CONCEPTUAL IMPACT FEE CALCULATION	6
GENERAL METHODOLOGIES	7
Cost Recovery (Past Improvements)	
Incremental Expansion (Concurrent Improvements)	
Plan-Based (Future Improvements)	
Credits	7
PARKS AND RECREATION	
METHODOLOGY	
PARKS AND RECREATION LEVEL-OF-SERVICE STANDARDS AND COST FACTORS	
Park Land - Incremental Expansion	
Park Amenities - Incremental Expansion	
Impact Fee Study – Plan-Based	
Debt Credit	
PROJECTED DEMAND FOR SERVICES AND COSTS	
Park Land – Incremental Expansion	
Park Amenities - Incremental Expansion	
PARKS AND RECREATION IMPACT FEES	
PARKS AND RECREATION IMPACT FEE REVENUE	16
Street	17
METHODOLOGY	17
VEHICLE TRIP GENERATION RATES AND ADJUSTMENTS	
Trip Generation Rates	
Trip Rate Adjustments	
Commuter Trip Rate Adjustment	19
Adjustment for Pass-by Trips	
Average Weekday Vehicle Trips	
National Average Trip Length	
Expected Vehicle Miles Traveled	
Local Adjustment Factor	
Local Trip Lengths	
Local Vehicle Miles Traveled	
Arterial Network Capacity and Usage	
Projected Travel Demand	
STREET LEVEL-OF-SERVICE STANDARDS AND COST FACTORS	
Improved Intersections – Incremental Expansion	
Impact Fee Study – Plan-Based	
STREET IMPACT FEES	
STREET IMPACT FEE REVENUE	28

APPENDIX A: LAND USE ASSUMPTIONS	29
RESIDENTIAL DEVELOPMENT	30
Persons Per Housing Unit	31
Current Population and Housing Units	
Projected Population and Housing Units	
NONRESIDENTIAL DEVELOPMENT	
Current Nonresidential Floor Area and Employment	34
Projected Nonresidential Floor Area and Employment	35
AVERAGE WEEKDAY VEHICLE TRIPS	36
Trip Rate Adjustments	36
Commuter Trip Rate Adjustment	36
Adjustment for Pass-by Trips	
Average Weekday Vehicle Trips	
FUNCTIONAL POPULATION	38
DEVELOPMENT PROJECTIONS	39
APPENDIX B: LAND USE DEFINITIONS	41
RESIDENTIAL DEVELOPMENT	41
Nonresidential Development	
APPENDIX C: IMPLEMENTATION AND ADMINISTRATION	43
CREDITS AND REIMBURSEMENTS	43
Service Area	44
INDEPENDENT IMPACT FEE STUDY	
APPENDIX D: ARTERIAL STREET NETWORK	

EXECUTIVE SUMMARY

The City of Foley, Alabama retained TischlerBise to prepare this report to analyze the impacts of development on the City's capital facilities and to calculate impact fees based on that analysis. Through interviews and discussions with City staff, TischlerBise developed the proposed impact fees discussed in this report. Methodologies and calculations are presented in this report as supporting documentation for Foley's proposed impact fee program. The beginning of each chapter includes a flow chart showing the formula used to calculate each impact fee.

An impact fee represents new development's proportionate share of capital facility needs. Impact fees are collected from new construction during the issuance of a building permit or a certificate of occupancy, and impact fees are used to construct system improvements needed to accommodate new development. Impact fees do have limitations and should not be regarded as the total solution for infrastructure funding. Rather, they are one component of a comprehensive funding strategy to ensure provision of adequate public facilities. Impact fees may only be used for capital improvements or debt service for growth-related infrastructure. In contrast to general taxes, impact fees may not be used for operations, maintenance, replacement of infrastructure, or correcting existing deficiencies. This Impact Fee Study includes the following types of infrastructure:

- Parks and Recreation
- Street

Discussed further in Appendix C, if Foley approves the proposed impact fees outlined in this study, the next steps include implementation and administration of the proposed fees. Alabama's enabling legislation for Baldwin County does not allow impact fees to exceed one percent of the estimated fair and reasonable market value of the new development after completion. The City of Foley will calculate this one-percent value for each new housing unit or development as applicable. As a result, the City may be able to collect only a portion of the maximum supportable fee amounts presented in Figure 2. Impact fees should be periodically evaluated and updated to reflect recent data—generally every five years. One approach is to adjust for inflation using the Engineering News Record (ENR) Construction Cost Index published by McGraw-Hill Companies. This index could be applied to the adopted impact fee schedule. If cost estimates or demand indicators change significantly, the City should update the fee calculations, which is recommended every five years.

Fees should be spent within five years of collection with the expenditures limited to growth-related system improvements or debt service on growth-related infrastructure, as specified in the study. General practice is aggregate first in, first out accounting (rather than project-specific tracking) with impact fees and accrued interest maintained in a separate fund that is not comingled with other revenues. TischlerBise recommends preparation of an annual report indicating impact fee collections, expenditures, and fund balances by type of infrastructure.

PROPOSED METHODOLOGIES AND COST COMPONENTS

The impact fees calculated for Foley represent the highest, or maximum allowable, amount feasible for each land use, which represents new growth's fair share of the cost for the appropriate capital facilities. Alabama's enabling legislation for Baldwin County does not allow impact fees to exceed one percent of the estimated fair and reasonable market value of the new development after completion. The City of Foley will calculate this one-percent value for each new housing unit or development as applicable. As a result, the City may be able to collect only a portion of the maximum supportable fee amounts presented in Figure 2.

Shown below, Figure 1 summarizes the methodologies and cost components used for each type of infrastructure in Foley's Impact Fee Study. After consideration of input during work sessions and public hearings, the City may change the proposed impact fees by eliminating infrastructure types, cost components, and/or specific capital improvements. If changes are made during the adoption process, TischlerBise will update the fee study to be consistent with legislative decisions.

Figure 1: Proposed Methodologies and Cost Components

Type of Infrastructure	Service Area	Cost Recovery	Incremental Expansion	Plan-Based	
Parks and Recreation	Citywide	N/A	Park Land, Improved Park Land, Park Amenities Impact Fee Study		Population
Street	Citywide	N/A	Signalized Intersections	Impact Fee Study	Vehicle Miles Traveled

PROPOSED IMPACT FEES

Shown below, Figure 2 summarizes proposed impact fees for new development in Foley. For residential development, proposed fees will be assessed per housing unit by type of unit. The proposed residential fee categories include single-family and multi-family units. Single-family units include attached, detached, and mobile home units. Multi-family units include duplexes and apartments with two or more units.

For nonresidential development, fees are assessed per square foot of floor area, per room for hotel, or per bed for assisted living. The proposed fee schedule for nonresidential development is designed to provide a reasonable impact fee determination for broad property classes – industrial, commercial, office and other services, institutional, hotel, and assisted living. For unique development types, the City may allow or require an independent impact fee determination.

Figure 2: Proposed Impact Fee Schedule

Residential Fees per Unit				
Re	sideritiai rees per	UIIIL		
Development Type	Parks &	Street	Total	
Development Type	Recreation	Street	Total	
Single Family	ingle Family \$2,477		\$2,974	
Multi-Family	\$1,432	\$286	\$1,718	

Nonresidential Fees per Square Foot					
Development Type	Parks & Recreation	Street	Total		
Industrial	\$0.00	\$0.11	\$0.11		
Commercial	\$0.00	\$0.69	\$0.69		
Office & Other Services	\$0.00	\$0.26	\$0.26		
Institutional	\$0.00		\$0.19		
Hotel (per room)	\$0	\$231	\$231		
Assited Living (per bed) \$0 \$70 \$					

All costs in the impact fee calculations are given in current dollars with no assumed inflation rate over time. Necessary cost adjustments can be made as part of the recommended annual evaluation and update of impact fees. One approach is to adjust for inflation in construction costs by means of an index like the one published by Engineering News Record (ENR). This index can be applied against the calculated impact fees. If cost estimates change significantly, the fees should be recalculated.

Calculations throughout this study are based on Excel software analysis. Results are discussed in the study using two- and three-digit decimal places in most cases, which represent rounded figures. The analysis itself uses figures carried out to their ultimate decimal places. Therefore, the sums and products generated in the analysis may not equal the sums and products presented in the text and figures in this study if the reader replicates the calculations with the factors shown in this study.

GENERAL LEGAL FRAMEWORK

Both state and federal courts have recognized the imposition of impact fees as a legitimate form of land use regulation, provided the fees meet standards intended to protect against regulatory takings. Land use regulations, development exactions, and impact fees are subject to the Fifth Amendment prohibition on taking of private property for public use without just compensation. To comply with the Fifth Amendment, development regulations must be shown to substantially advance a legitimate governmental interest. In the case of impact fees, that interest is in the protection of public health, safety, and welfare by ensuring development is not detrimental to the quality of essential public services. The means to this end are also important, requiring both procedural and substantive due process. The process followed to receive community input (i.e., stakeholder meetings, work sessions, and public hearings) provides opportunities for comments and refinements to the impact fees.

There is little federal case law specifically dealing with impact fees, although other rulings on other types of exactions (e.g., land dedication requirements) are relevant. In one of the most important exaction cases, the U. S. Supreme Court found that a government agency imposing exactions on development must demonstrate an "essential nexus" between the exaction and the interest being protected (see *Nollan v. California Coastal Commission*, 1987). In a more recent case (*Dolan v. City of Tigard, OR*, 1994), the Court ruled that an exaction must also be "roughly proportional" to the burden created by development. However, the *Dolan* decision appeared to set a higher standard of review for mandatory dedications of land than for monetary exactions such as impact fees.

There are three reasonable relationship requirements for impact fees that are closely related to "rational nexus" or "reasonable relationship" requirements enunciated by a number of state courts. Although the term "dual rational nexus" is often used to characterize the standard by which courts evaluate the validity of impact fees under the U.S. Constitution, we prefer a more rigorous formulation that recognizes three elements: need, benefit, and proportionality. The dual rational nexus test explicitly addresses only the first two, although proportionality is reasonably implied, and was specifically mentioned by the U.S. Supreme Court in the *Dolan* case. Individual elements of the nexus standard are discussed further in the following paragraphs.

All new development in a community creates additional demands on some, or all, public facilities provided by local government. If the capacity of facilities is not increased to satisfy that additional demand, the quality or availability of public services for the entire community will deteriorate. Impact fees may be used to recover the cost of development-related facilities, but only to the extent that the need for facilities is a consequence of development that is subject to the fees. The *Nollan* decision reinforced the principle that development exactions may be used only to mitigate conditions created by the developments upon which they are imposed. That principle clearly applies to impact fees. In this study, the impact of development on infrastructure needs is analyzed in terms of quantifiable relationships between various types of development and the demand for specific capital facilities, based on applicable level-of-service standards.

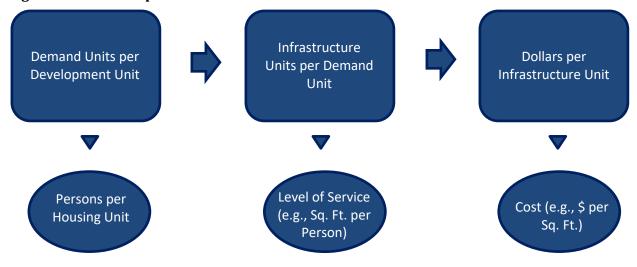
The requirement that exactions be proportional to the impacts of development was clearly stated by the U.S. Supreme Court in the *Dolan* case and is logically necessary to establish a proper nexus. Proportionality is established through the procedures used to identify development-related facility costs, and in the methods used to calculate impact fees for various types of facilities and categories of development. The demand for capital facilities is measured in terms of relevant and measurable attributes of development (e.g., a typical housing unit's average weekday vehicle trips).

A sufficient benefit relationship requires that impact fee revenues be segregated from other funds and expended only on the facilities for which the fees were charged. Impact fees must be expended in a timely manner and the facilities funded by the fees must serve the development paying the fees. However, nothing in the U.S. Constitution or the state enabling legislation requires that facilities funded with fee revenues be available *exclusively* to development paying the fees. In other words, benefit may extend to a general area including multiple real estate developments. Procedures for the earmarking and expenditure of fee revenues are discussed near the end of this study. All these procedural as well as substantive issues are intended to ensure that new development benefits from the impact fees they are required to pay. The authority and procedures to implement impact fees is separate from and complementary to the authority to require improvements as part of subdivision or zoning review.

As previously mentioned, Alabama's enabling legislation states:

"An impact fee per service unit of new development may be set by the political subdivision not to exceed one percent of the estimated fair and reasonable market value of the new development after completion." (AL Code § 45-2-243.84 (2013))

As documented in this study, the City of Foley has complied with applicable legal precedents. Impact fees are proportionate and reasonably related to the capital improvement demands of new development. Specific costs have been identified using local data and current dollars. With input from City staff, TischlerBise identified demand indicators for each type of infrastructure and calculated proportionate share factors to allocate costs by type of development. This study documents the formulas and input variables used to calculate the impact fees for each type of public facility. Impact fee methodologies also identify the extent to which new development is entitled to various types of credits to avoid potential double payment of growth-related capital costs.



CONCEPTUAL IMPACT FEE CALCULATION

In contrast to project-level improvements, impact fees fund growth-related infrastructure that will benefit multiple development projects, or the entire jurisdiction (referred to as system-level improvements). The first step is to determine an appropriate demand indicator for the particular type of infrastructure. The demand indicator measures the number of demand units for each unit of development.

For example, an appropriate indicator of the demand for parks is population growth and the increase in population can be estimated from the average number of persons per housing unit. The second step in the impact fee formula is to determine infrastructure units per demand unit, typically called level-of-service (LOS) standards. In keeping with the park example, a common LOS standard is park acreage per person. The third step in the impact fee formula is to determine the cost of various infrastructure units. To complete the park example, this part of the formula will establish the cost per acre for land acquisition and/or park improvements.

Figure 3: Generic Impact Fee Formula

GENERAL METHODOLOGIES

There are three general methodologies used for calculating impact fees. The choice of a particular methodology depends primarily on the timing of infrastructure construction (past, concurrent, or future) and service characteristics of the facility type being addressed. Each methodology has advantages and disadvantages in a particular situation and can be used simultaneously for different cost components.

Reduced to its simplest terms, the process of calculating impact fees involves two main steps: (1) determining the cost of development-related capital improvements and (2) allocating those costs equitably to various types of development. In practice, though, the calculation of impact fees can become quite complicated because of the many variables involved in defining the relationship between development and the need for facilities within the designated service area. The following paragraphs discuss three basic methodologies for calculating impact fees and how they can be applied.

Cost Recovery (Past Improvements)

The rationale for recoupment, often called cost recovery, is that new development is paying for its share of the useful life and remaining capacity of facilities already built, or land already purchased, from which new development will benefit. This methodology is often used for utility systems that must provide adequate capacity before new development can take place.

Incremental Expansion (Concurrent Improvements)

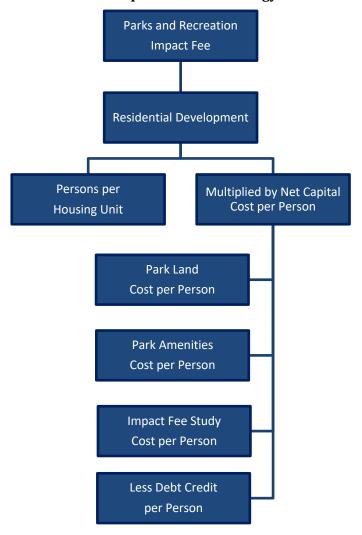
The incremental expansion methodology documents current level-of-service (LOS) standards for each type of public facility, using both quantitative and qualitative measures. This approach assumes there are no existing infrastructure deficiencies or surplus capacity in infrastructure. New development is only paying its proportionate share for growth-related infrastructure. Revenue will be used to expand or provide additional facilities, as needed, to accommodate new development. An incremental expansion cost methodology is best suited for public facilities that will be expanded in regular increments.

Plan-Based (Future Improvements)

The plan-based methodology allocates costs for a specific improvement to a specific amount of development. Improvements are typically identified in a long-range facility plan and development potential is identified by a land use plan. There are two basic options for determining the cost per demand unit: 1) total public facility cost divided by total demand units (average cost), or 2) growth-share of public facility cost divided by the net increase in demand units over the planning timeframe (marginal cost).

Credits

Regardless of the methodology, a consideration of credits is integral to the development of a legally defensible impact fee methodology. There are two types of credits with specific characteristics, both of which should be addressed in impact fee studies and ordinances. The first is a revenue credit due to possible double payment situations, which could occur when other revenues may contribute to the capital costs of infrastructure covered by the impact fee. This type of credit is integrated into the impact fee calculation, thus reducing the fee amount. The second is a site-specific credit or developer reimbursement for dedication of land or construction of system improvements. This type of credit is addressed in the administration and implementation of the impact fee program.


PARKS AND RECREATION

METHODOLOGY

The Parks and Recreation Impact Fee includes components for park land, park amenities, and the cost of preparing the Parks and Recreation Impact Fees and related Impact Fee Study. Parks and Recreation Impact Fees use the incremental expansion methodology for park land and park amenities, and they use the plan-based methodology for the Impact Fee Study. Population is used when determining level-of-service standards for parks and recreation infrastructure. A debt service credit is included in the fee as well due to outstanding debt related to the Foley Sports Complex and Rose Trail. No capital costs are allocated to nonresidential development.

Figure PR1 diagrams the general methodology used to calculate the Parks and Recreation Impact Fee. Capital costs are allocated to residential development, and residential fees are calculated on a per capita basis, with the net capital cost per person multiplied by the persons per housing unit factors discussed in Appendix A. No capital costs are allocated to nonresidential development.

Figure PR1: Parks and Recreation Impact Fee Methodology

PARKS AND RECREATION LEVEL-OF-SERVICE STANDARDS AND COST FACTORS

Park Land - Incremental Expansion

The City of Foley currently provides 191.2 acres of park land¹, and the City plans to acquire additional park land to serve future development. As shown in Figure PR2, the analysis assesses residential level-of-service standards based on 2021 population. Foley's existing level of service for residential development is 0.0073 acres per person (191.2 acres X 100 percent residential share / 26,334 persons).

Based on recent land acquisition costs provided by city staff, the analysis uses a land acquisition cost of \$26,000 per acre. Multiplying the level-of-service standards by the cost per acre provides the cost per demand unit. For park land, the cost per demand unit is \$188.77 per person (0.0073 acres per person X \$26,000 per acre).

Figure PR2: Park Land Level of Service

Description	Total Acres
Aaronville Ball	13.0
Beulah Heights	8.0
Evans	14.3
Florence Matthis / Aaronville Pool	2.0
Foley Dog	1.9
Foley Sports Complex	89.0
Heritage	7.0
John B. Foley	3.0
Max Griffin	13.0
Melvin Roberts	20.0
Wolf Creek	20.0
Total	191.2

Cost Factors	
Cost per Acre - Land Acquisition	\$26,000

Level-of-Service (LOS) Standards				
Existing Acres 191				
Residential				
Residential Share	100%			
2021 Population	26,334			
Acres per Person	0.0073			
Cost per Person	\$188.77			

Source: Foley Parks Department

¹ The current inventory of 191.2 acres does not include Graham Creek Nature Preserve (484 acres) due to the unique nature of this park.

9

Park Amenities - Incremental Expansion

The City of Foley currently provides 897 park amenities in its existing parks, and the City plans to construct additional park amenities to serve future development. As shown in Figure PR3, the analysis assesses residential level-of-service standards based on 2021 population. Foley's existing level of service for residential development is 0.0341 amenities per person (897 amenities X 100 percent residential share / 26,334 persons).

Multiplying the level-of-service standards by the weighted average cost of \$31,377 per amenity (\$28,145,400 replacement value / 897 amenities) provides the cost per demand unit. For park amenities, the cost per demand unit is \$1,068.77 per person (0.0341 amenities per person X \$31,377 per amenity).

Figure PR3: Park Amenities Level of Service

Description	Amenities	Unit Cost	Total Cost	
Pavillion	8	\$150,000	\$1,200,000	
Playground	8	\$50,000	\$400,000	
Restroom	11	\$150,000	\$1,650,000	
Softball Field	10	\$650,000	\$6,500,000	
Tennis Court	6	\$50,000	\$300,000	
Baseball Field	8	\$700,000	\$5,600,000	
Basketball Court	10	\$15,000	\$150,000	
Soccer Field	5	\$200,000	\$1,000,000	
Parking Spaces	821	\$2,400	\$1,970,400	
Concession Stand	3	\$250,000	\$750,000	
Pool	2	\$4,000,000	\$8,000,000	
Skate Park	1	\$200,000	\$200,000	
Pier	2	\$50,000	\$100,000	
Boardwalk	1	\$250,000	\$250,000	
Kayak Launch	1	\$75,000	\$75,000	
Total	897	\$31,377	\$28,145,400	

Cost Factors	
Weighted Average per Amenity	\$31,377

Level-of-Service (LOS) Standards			
Existing Amenities 897			
Residential			
Residential Share 100%			
2021 Population	26,334		
Amenities per Person	0.0341		
Cost per Person	\$1,068.77		

Source: Foley Parks Department

Impact Fee Study - Plan-Based

The cost to prepare the Parks and Recreation Impact Fees and related Impact Fee Study equals \$20,000. Foley plans to update its study every five years. Based on this cost, proportionate share, and five-year projections of future development projections, the cost is \$3.67 per person.

Figure PR4: Impact Fees and Impact Fee Study

Infrastructure Category	Cost	Proportionate Share		Service Unit	5-Year Change	Cost per Service Unit
Parks and	\$20,000	Residential	100%	Population	5,447	\$3.67
Recreation	\$20,000	Nonresidential	0%	Jobs	2,322	\$0.00
Street	\$39,000	All Development	100%	VMT	88,471	\$0.44
Total	\$59,000					

Debt Credit

The City debt financed construction of Foley Sports Complex and Rose Trail with a share of the Series 2009 Public Facilities Cooperative District General Obligation Bond. To refund the Series 2009 bond, the City issued the Series 2016 Public Facilities Cooperative District Revenue Refunding Bond and the Series 2019 General Obligation Bond. The City provided the payment schedule for these bonds along with corresponding percentages of the bond dedicated to parks and recreation improvements.

A credit is necessary since new residential development that pays impact fees will contribute to future principal payments through taxes. Figure PR5 includes the principal payment credit calculation. To account for the time value of money, annual principal payments per person are discounted using a net present value formula based on a discount rate of four percent. The annual parks and recreation share of the remaining principal payments is allocated to projected population. A credit in the amount of \$87.24 is subtracted from the gross capital cost per person to derive a net capital cost per person.

Figure PR5: Credit for Future Principal Payments

Fiscal Year	Series 2016	Series 2019	Total Principal ¹	Park Share	Population	\$ per Person
2021	\$65,000	\$0	\$65,000	\$16,891	26,334	\$0.64
2022	\$65,000	\$1,095,000	\$1,160,000	\$301,435	27,424	\$10.99
2023	\$65,000	\$1,150,000	\$1,215,000	\$315,728	28,513	\$11.07
2024	\$65,000	\$1,210,000	\$1,275,000	\$331,319	29,603	\$11.19
2025	\$1,290,000	\$50,000	\$1,340,000	\$348,210	30,692	\$11.35
2026	\$1,315,000	\$50,000	\$1,365,000	\$354,706	31,782	\$11.16
2027	\$1,345,000	\$45,000	\$1,390,000	\$361,203	32,871	\$10.99
2028	\$325,000	\$1,100,000	\$1,425,000	\$370,298	33,961	\$10.90
2029	\$1,425,000	\$65,000	\$1,490,000	\$387,189	35,050	\$11.05
2030	\$1,480,000	\$70,000	\$1,550,000	\$402,780	36,140	\$11.15
2031	\$1,540,000	\$70,000	\$1,610,000	\$418,371	37,229	\$11.24
Remaining	\$8,980,000	\$4,905,000	\$13,885,000	\$3,608,129		\$111.73
Discount Rate						4.00%
Net Present \	Net Present Value					

^{1.} Includes Series 2016 PFCD Refunding Bond and Series 2019 GO Bond

PROJECTED DEMAND FOR SERVICES AND COSTS

As shown in Appendix A, Foley's population is expected to increase by 10,895 persons over the next 10 years. To maintain the existing levels of service, Foley will need to acquire approximately 79 acres of park land and construct approximately 371 park amenities over the next 10 years. The following pages include a more detailed projection of demand for services and costs.

Park Land - Incremental Expansion

Foley plans to maintain its existing level of service for park land over the next 10 years. Based on a projected population increase of 10,895 persons, future residential development demands an additional 79.1 acres of park land (10,895 additional persons X 0.0073 acres per person) at a cost of \$2,056,646 (79.1 acres X \$26,000 per acre).

Figure PR6: Growth-Related Demand for Park Land

Type of Infrastructure	Level of Service	Demand Unit	Cost per Unit
Park Land	0.0073 Acres	per Person	\$26,000
Park Lanu	0.0000 Acres	per Job	\$26,000

Demand for Park Land						
Year	Population	Jobs	Acres			
Teal	Population	1002	Residential	Nonresidential	Total	
2021	26,334	13,081	191.2	0.0	191.2	
2022	27,424	13,509	199.1	0.0	199.1	
2023	28,513	13,954	207.0	0.0	207.0	
2024	29,603	14,418	214.9	0.0	214.9	
2025	30,692	14,901	222.8	0.0	222.8	
2026	31,782	15,403	230.8	0.0	230.8	
2027	32,871	15,926	238.7	0.0	238.7	
2028	33,961	16,472	246.6	0.0	246.6	
2029	35,050	17,040	254.5	0.0	254.5	
2030	36,140	17,632	262.4	0.0	262.4	
2031	37,229	18,249	270.3	0.0	270.3	
10-Yr Increase	10,895	5,168	79.1	0.0	79.1	

Growth-Related Expenditures \$2,056,646 \$0 \$2,056,646

Park Amenities - Incremental Expansion

Foley plans to maintain its existing level of service for park amenities over the next 10 years. Based on a projected population increase of 10,895 persons, future residential development demands an additional 371.1 park amenities (10,895 additional persons X 0.0341 amenities per person) at a cost of \$11,644,096 (371.1 park amenities X \$31,377 per park amenity).

Figure PR7: Growth-Related Demand for Park Amenities

Type of Infrastructure	Level of Service	Demand Unit	Cost per Unit
Park Amenities	0.0341 Amenities	per Person	\$31,377
	0.0000 Amenities	per Job	Ş 31, 377

Demand for Park Amenities					
Year	Population	Jobs	Amenities		
Teal	ropulation	1002	Residential	Nonresidential	Total
2021	26,334	13,081	897.0	0.0	897.0
2022	27,424	13,509	934.1	0.0	934.1
2023	28,513	13,954	971.2	0.0	971.2
2024	29,603	14,418	1,008.3	0.0	1,008.3
2025	30,692	14,901	1,045.4	0.0	1,045.4
2026	31,782	15,403	1,082.5	0.0	1,082.5
2027	32,871	15,926	1,119.7	0.0	1,119.7
2028	33,961	16,472	1,156.8	0.0	1,156.8
2029	35,050	17,040	1,193.9	0.0	1,193.9
2030	36,140	17,632	1,231.0	0.0	1,231.0
2031	37,229	18,249	1,268.1	0.0	1,268.1
10-Yr Increase	10,895	5,168	371.1	0.0	371.1

Growth-Related Expenditures \$11,644,096 \$0 \$11,644,096

PARKS AND RECREATION IMPACT FEES

Shown below, Figure PR8 details the proposed Parks and Recreation Impact Fees. Residential fees are derived from the average number of persons per housing unit and the total cost per demand unit of \$1,173.97 per person. Foley will not assess Parks and Recreation Impact fees to nonresidential development.

To derive the proposed fee for residential development, multiply the average number of persons per housing unit by the cost per person. For example, the fee for a single-family unit is \$2,477 (2.11 persons per housing unit X \$1,173.97 per person).

Figure PR8: Parks and Recreation Impact Fee Schedule

Fee Component	Cost per Person	Cost per Job
Park Land	\$188.77	\$0.00
Park Amenities	\$1,068.77	\$0.00
Impact Fee Study	\$3.67	\$0.00
Debt Credit	(\$87.24)	\$0.00
Total	\$1,173.97	\$0.00

Residential Fees per Unit					
Development Type	Persons per	Proposed			
Development Type	Housing Unit ¹	Fees			
Single Family	2.11	\$2,477			
Multi-Family	1.22	\$1,432			

Nonresidential Fees per Square Feet							
Nonresidential Fees per Square Foot							
Development Type	Jobs per	Proposed					
Development Type	1,000 Sq Ft ¹	Fees					
Industrial	1.59	\$0.00					
Commercial	2.34	\$0.00					
Office & Other Services	2.97	\$0.00					
Institutional	2.83	\$0.00					
Hotel (per room)	0.58	\$0					
Assited Living (per bed)	0.61	\$0					

1. See Land Use Assumptions

PARKS AND RECREATION IMPACT FEE REVENUE

Revenue projections in Figure PR9 assume implementation of the proposed Parks and Recreation Impact Fees shown on the previous page and that development over the next 10 years is consistent with the development projections described in Appendix A. To the extent the actual rate of development either increases or decreases, there will be a corresponding change in the impact fee revenue.

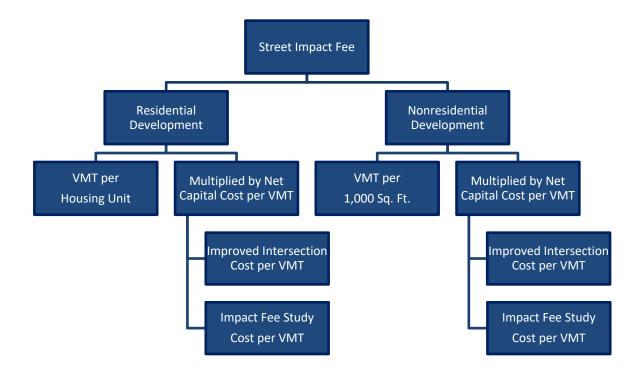
Projected Parks and Recreation Impact Fee revenue equals \$12,770,271 over the next 10 years compared to projected growth-related capital costs of \$12,770,271. Alabama's enabling legislation for Baldwin County does not allow impact fees to exceed one percent of the estimated fair and reasonable market value of the new development after completion. The City of Foley will calculate this one-percent value for each new development as applicable. As a result, the City may be able to collect only a portion of the proposed impact fees resulting in a reduction in projected impact fee revenue.

Figure PR9: Projected Parks and Recreation Impact Fee Revenue

Fee Component	Growth Share	Existing Share	Total
Park Land	\$2,056,646	\$0	\$2,056,646
Park Amenities	\$11,644,096	\$0	\$11,644,096
Impact Fee Study	\$20,000	\$0	\$20,000
Debt Credit	(\$950,471)	\$0	(\$950,471)
Total	\$12,770,271	\$0	\$12,770,271

		Single Family	Multi-Family	Industrial	Commercial	Office & Other	Institutional
		\$2,477	\$1,432	\$0.00	\$0.00	\$0.00	\$0.00
		per unit	per unit	per sq ft	per sq ft	per sq ft	per sq ft
Yea	ar	Hsg Unit	Hsg Unit	KSF	KSF	KSF	KSF
Base	2021	8,780	2,339	1,193	2,638	674	1,063
Year 1	2022	9,157	2,580	1,218	2,765	676	1,093
Year 2	2023	9,534	2,821	1,244	2,898	678	1,124
Year 3	2024	9,911	3,062	1,270	3,037	680	1,156
Year 4	2025	10,288	3,303	1,297	3,183	682	1,189
Year 5	2026	10,665	3,544	1,325	3,335	684	1,222
Year 6	2027	11,042	3,785	1,353	3,495	686	1,257
Year 7	2028	11,419	4,026	1,382	3,663	688	1,293
Year 8	2029	11,796	4,267	1,410	3,839	690	1,330
Year 9	2030	12,173	4,508	1,441	4,024	692	1,367
Year 10	2031	12,550	4,749	1,471	4,217	694	1,406
10-Year I	ncrease	3,770	2,410	278	1,578	21	343
Projected	Revenue	\$9,323,966	\$3,446,305	\$0	\$0	\$0	\$0

Projected Fee Revenue	\$12,770,271
Total Expenditures	\$12,770,271
Existing Development Share	\$0


STREET

METHODOLOGY

The Street Impact Fee includes components for improved intersections and the cost of preparing the Street Impact Fees and related Impact Fee Study. Street Impact Fees use the incremental expansion methodology for improved intersections, and they use the plan-based methodology for the Impact Fee Study. Costs are allocated to both residential and nonresidential development using vehicle miles traveled (VMT). To calculate VMT, the analysis uses trip generation rates by type of development, trip adjustment factors, and local trip lengths.

Figure S1 diagrams the general methodology used to calculate the Street Impact Fee. It is intended to read like an outline, with lower levels providing a more detailed breakdown of the fee components. The Street Impact Fee is derived from the product of VMT per demand unit and the net capital cost per VMT.

Figure S1: Street Impact Fee Methodology

VEHICLE TRIP GENERATION RATES AND ADJUSTMENTS

Foley will use vehicle miles traveled (VMT) as the demand units for Street Impact Fees. Components used to calculate VMT include average weekday vehicle trip generation rates, adjustments for commuting patterns and pass-by trips, and trip length weighting factors.

Trip Generation Rates

Vehicle trips are estimated using average weekday vehicle trip ends from the reference book, *Trip Generation*, 10th Edition, published by the Institute of Transportation Engineers (ITE) in 2017. The prototype for a single-family unit is Single Family (ITE 210), and it generates 9.44 average weekday vehicle trip ends per unit. For multi-family units, the proxy is Multifamily (ITE 221), and it generates 5.44 average weekday vehicle trip ends per unit.

The prototype for industrial development is Manufacturing (ITE 140) which generates 3.93 average weekday vehicle trip ends per 1,000 square feet of floor area. For commercial development, the prototype is Shopping Center (ITE 820) which generates 37.75 average weekday vehicle trips per 1,000 square feet of floor area. For office & other services development, the proxy is General Office (ITE 710), and it generates 9.74 average weekday vehicle trip ends per 1,000 square feet of floor area. Institutional development uses Hospital (ITE 610) and generates 10.72 average weekday vehicle trip ends per 1,000 square feet of floor area. For hotel development, the proxy is Hotel (ITE 310), and this type of development generates 8.36 average weekday vehicle trip ends per room. Assisted living development uses Assisted Living (ITE 254) as a proxy and generates 2.60 average weekday vehicle trip ends per bed.

Trip Rate Adjustments

To calculate Street Impact Fees, trip generation rates require an adjustment factor to avoid double counting each trip at both the origin and destination points. Therefore, the basic trip adjustment factor is 50 percent. As discussed further in this section, the impact fee methodology includes additional adjustments to make the fees proportionate to the infrastructure demand for particular types of development.

Commuter Trip Rate Adjustment

Residential development has a higher trip adjustment factor of 61 percent to account for commuters leaving Foley for work. According to the 2009 National Household Travel Survey (see Table 30 of Survey) weekday work trips are typically 31 percent of production trips (i.e., all out-bound trips, which are 50 percent of all trip ends). As shown in Figure S2, the U.S. Census Bureau's OnTheMap web application indicates 73 percent of resident workers traveled outside of Foley for work in 2018. In combination, these factors (0.3099 X 0.50 X 0.73 = 0.11) support the additional 11 percent allocation of trips to residential development.

Figure S2: Commuter Trip Adjustment

Trip Adjustment Factor for Commuters ¹	
Employed Residents	7,512
Residents Living and Working in Foley	2,020
Residents Commuting Outside Foley for Work	5,492
Percent Commuting out of Foley	73%
Additional Production Trips ²	11%
Residential Trip Adjustment Factor	61%

^{1.} U.S. Census Bureau, OnTheMap Application (version 6.8) and LEHD Origin-Destination Employment Statistics, 2018.

Adjustment for Pass-by Trips

The basic trip adjustment factor of 50 percent is applied to the industrial and the office and other services categories. The commercial and institutional categories have a trip factor of less than 50 percent because these types of development attract vehicles as they pass by on arterial and collector roads. For example, for an average size shopping center, the ITE (2017) indicates that on average 34 percent of the vehicles that enter are passing by on their way to some other primary destination. The remaining 66 percent of attraction trips have the shopping center as their primary destination. Because attraction trips are half of all trips, the trip adjustment factor (0.66 X 0.50) is approximately 33 percent of the trip ends.

^{2.} According to the National Household Travel Survey (2009)*, published in December 2011 (see Table 30), home-based work trips are typically 30.99 percent of "production" trips, in other words, out-bound trips (which are 50 percent of all trip ends). Also, LED OnTheMap data from 2018 indicate that 73 percent of Foley's workers travel outside the city for work. In combination, these factors $(0.3099 \times 0.50 \times 0.73 = 0.11)$ account for 11 percent of additional production trips. The total adjustment factor for residential includes attraction trips (50 percent of trip ends) plus the journey-to-work commuting adjustment (11 percent of production trips) for a total of 61 percent.

^{*}http://nhts.ornl.gov/publications.shtml; Summary of Travel Trends - Table "Daily Travel Statistics by Weekday vs. Weekend"

Average Weekday Vehicle Trips

Using the current estimates of residential housing units and nonresidential square footage by type, TischlerBise applied the trip end estimates and adjustment factors to calculate the average weekday vehicle trips for existing development in Foley. TischlerBise estimates there are 100,575 average weekday vehicle trips attributable to existing development in the City of Foley.

Figure S3: Average Weekday Vehicle Trips

Development	Development	ITE	Avg Wkday	Trip	2021	2021
Туре	Unit	Code	VTE	Adjustment	Dev Units	Veh Trips
Single Family	HU	210	9.44	61%	8,780	50,559
Multi-Family	HU	221	5.44	61%	2,339	7,762
Industrial	KSF	130	3.93	50%	1,193	2,345
Commercial	KSF	820	37.75	33%	2,638	32,868
Office & Other Services	KSF	710	9.74	50%	674	3,281
Institutional	KSF	610	10.72	33%	1,063	3,761
Total						100,575

National Average Trip Length

To calculate Street Impact Fees, it is necessary to determine the average trip length on Foley's arterial network. To do this, the analysis uses national trip generation rates and average trip lengths from the 2017 National Household Travel Survey.

Figure S4: National Average Trip Lengths

Land Use	National Avg Trip Length (miles)
Residential	12.32
Industrial	7.70
Commercial/Retail	7.90
Office and Other	7.70
Institutional	7.70

Source: U.S. Department of Transportation, Federal Highway Administration, 2017 National Household Transportation Survey, adjusted for land use

Expected Vehicle Miles Traveled

The national average trip length should be adjusted to reflect actual local demand on the Foley's arterial network. To do this, TischlerBise determines expected demand (VMT) on the Foley's complete transportation network by multiplying the national average trip lengths by average weekday vehicle trips. Based on this analysis, Foley's existing development generates an expected 1,050,441 VMT.

Figure S5: Expected Vehicle Miles Traveled

Land Use	Avg Weekday	National Avg Trip	Expected VMT ³	
Land OSE	Vehicle Trips ¹	Length (miles) ²	expected vivii	
Single Family	50,559	12.32	622,884	
Multi-Family	7,762	12.32	95,625	
Industrial	2,345	7.70	18,054	
Commercial	32,868	7.90	259,659	
Office & Other Services	3,281	7.70	25,262	
Institutional	3,761	7.70	28,957	
Total			1,050,441	

- 1. Average weekday vehicle trips from Figure S4
- 2. 2017 National Household Transportation Survey
- 3. TischlerBise calculation, Average Weekday Vehicle Trips X National Average Trip Length

Local Adjustment Factor

Expected VMT reflects anticipated travel demand on the entire roadway system; therefore, it is necessary to calibrate demand to the arterial system. To calibrate demand on the arterial system, actual travel demand, based on local traffic counts provided by ALDOT and Esris Business Analyst (Appendix D), is compared to expected travel demand. The ratio between actual VMT and expected VMT provides the local adjustment factor used to adjust national average trip lengths by type of land use.

Figure S6: Local Adjustment Factor

Local Adjustment Factor				
Actual VMT on Arterials ¹	359,808			
Expected VMT on Arterials	1,050,441			
Actual to Expected VMT	0.34			

1. TischlerBise analysis of trip counts provided by the ALDOT and Esri Business Analyst

Local Trip Lengths

Shown below in Figure S7, TischlerBise applies the local adjustment factor to the national average trip lengths to calculate the local trip lengths. The analysis will use the local trip lengths shown below to calculate vehicle miles traveled.

Figure S7: Local Trip Lengths

Land Use	National Avg Trip Length (miles)	Local Adjustment	Local Trip Length
Residential	12.32	0.34	4.22
Industrial	7.70	0.34	2.64
Commercial/Retail	7.90	0.34	2.71
Office and Other	7.70	0.34	2.64
Institutional	7.70	0.34	2.64

Source: 2017 NHTS and TischlerBise analysis; local adjustment from Figure S6

Local Vehicle Miles Traveled

Shown below are the demand indicators for residential and nonresidential land uses related to vehicle miles traveled (VMT). For residential development, the table displays VMT per housing unit. For nonresidential development, the table displays VMT generated per 1,000 square feet of floor area.

Figure S8: Local Vehicle Miles Traveled

Development Type	Development Unit	ITE Code	Weekday VTE	Trip Adj	Local Trip Length	Weekday VMT
Single Family	HU	210	9.44	61%	4.22	24.30
Multi-Family	HU	221	5.44	61%	4.22	14.00
Industrial	KSF	140	3.93	50%	2.64	5.18
Commercial	KSF	820	37.75	33%	2.71	33.71
Office & Other Services	KSF	710	9.74	50%	2.64	12.84
Institutional	KSF	610	10.72	33%	2.64	9.33

Arterial Network Capacity and Usage

As shown in Appendix D, the City of Foley provided an inventory of street segments including segment lengths and lane quantities. TischlerBise uses average daily traffic (ADT) counts provided by ALDOT and Esri Business Analyst. Multiplying each segment's length by the number of lanes yields the number of lane miles per segment and multiplying the traffic counts and segment lengths provides the average weekday vehicle miles traveled (VMT). Foley's arterial network consists of 119.77 lane miles and 359,808 VMT.

Figure S9 documents the capacity of Foley's arterial network. Based on LOS D capacities published by the Florida Department of Transportation, a mile segment of an arterial should maintain a daily volume ranging from 12,300 vehicles for a two-lane arterial without left-turn lanes (6,150 vehicles per lane) to 31,100 vehicles for a four-lane arterial with left-turn lanes (7,775 vehicles per lane). Applying these capacities to Foley's arterial network shown in Appendix D generates arterial capacity of 819,438 vehicle miles of capacity (VMC) and a weighted average of 6,842 vehicles per lane (819,438 VMC / 119.77 arterial lane miles).

As noted above, current daily volume on Foley's arterial network is approximately 359,808 VMT. The resulting VMC to VMT ratio is 2.28 (819,438 VMC / 359,808 VMT). The baseline VMC / VMT ratio for any incremental expansion method is 1.0 (i.e., VMC = VMT); therefore, the current ratio of 2.28 exceeds the current LOS ensuring new capacity built with impact fees will not exceed the current LOS.

Figure S9: Arterial Network Capacity and Usage

Arterial Capacity Ratio			
Total Arterial Lane Miles	119.77		
Capacity per Lane Mile ¹	6,842		
Vehicle Miles of Capacity	819,438		
Vehicle Miles Traveled	359,808		
VMC / VMT Ratio	2.28		

^{1.} Weighted average based on capacities published by the Florida Department of Transportation, LOS D

Projected Travel Demand

The cost factors used to calculate Street Impact Fees rely on data pertaining to existing and future VMT. Based on the trip generation factors discussed in this section, future development generates an additional 183,465 VMT over the next 10 years. Shown below in Figure S10, Foley will need to construct approximately 26.82 lane miles of arterials and approximately 4.1 improved intersections over the next 10 years to maintain the existing levels of service.

Figure S10: Projected Travel Demand

Development Type	Development Unit	ITE Code	Weekday VTE	Trip Adj	Local Trip Length	Weekday VMT
Single Family	HU	210	9.44	61%	4.22	24.30
Multi-Family	HU	221	5.44	61%	4.22	14.00
Industrial	KSF	140	3.93	50%	2.64	5.18
Commercial	KSF	820	37.75	33%	2.71	33.71
Office & Other Services	KSF	710	9.74	50%	2.64	12.84
Institutional	KSF	610	10.72	33%	2.64	9.33

	Foley, Alabama	2021	2022	2023	2024	2025	2026	2031	10-Year
	i diey, Alabama	Base	1	2	3	4	5	10	Increase
	Single Family Units	8,780	9,157	9,534	9,911	10,288	10,665	12,550	3,770
ent	Multi-Family Units	2,339	2,580	2,821	3,062	3,303	3,544	4,749	2,410
Development	Industrial KSF	1,193	1,218	1,244	1,270	1,297	1,325	1,471	278
velc	Commercial KSF	2,638	2,765	2,898	3,037	3,183	3,335	4,217	1,578
De	Office & Other Services KSF	674	676	678	680	682	684	694	21
	Institutional KSF	1,063	1,093	1,124	1,156	1,189	1,222	1,406	343
	Single-Family Trips	50,559	52,730	54,901	57,072	59,242	61,413	72,268	21,709
Trips	Multi-Family Trips	7,762	8,561	9,361	10,161	10,961	11,760	15,759	7,997
	Residential Trips	58,320	61,291	64,262	67,232	70,203	73,174	88,027	29,707
Vehicle	Industrial Trips	2,345	2,394	2,445	2,496	2,549	2,604	2,890	545
lay \	Commercial Trips	32,868	34,448	36,097	37,831	39,650	41,549	52,529	19,660
Weekday	Office & Other Services Trips	3,281	3,291	3,300	3,310	3,320	3,330	3,381	100
We	Institutional Trips	3,761	3,867	3,977	4,090	4,205	4,324	4,974	1,213
Avg	Nonresidential Trips	42,254	44,000	45,819	47,728	49,725	51,807	63,774	21,519
	Total Vehicle Trips	100,575	105,291	110,081	114,960	119,928	124,981	151,801	51,226
VMT	Vehicle Miles Traveled (VMT)	359,808	377,056	394,505	412,193	430,122	448,280	543,273	183,465
	Arterial Lane Miles		2.52	2.55	2.59	2.62	2.65	2.86	26.82
	Improved Intersections		0.4	0.4	0.4	0.4	0.4	0.4	4.1

STREET LEVEL-OF-SERVICE STANDARDS AND COST FACTORS

Improved Intersections - Incremental Expansion

The City of Foley provided a list of potential growth-related intersection improvements it intends to construct within the next 10 years. Based on the total cost of the potential improved intersections, the weighted average cost is \$900,000 per improved intersection (\$6,300,000 total cost / seven improved intersections). Foley may use impact fees to construct the projects shown below or to construct additional improved intersections similar to the projects shown below.

Figure S11: Growth-Related Intersections Projects

Description	Total Cost	Other Funding	Eligible Cost
Azalea and Juniper	\$750,000	\$0	\$750,000
Michigan and Cedar	\$750,000	\$0	\$750,000
Michigan and Hickory	\$300,000	\$0	\$300,000
Michigan and Juniper	\$750,000	\$0	\$750,000
Hickory and CR 12	\$1,250,000	\$0	\$1,250,000
Hickory and CR 20	\$1,250,000	\$0	\$1,250,000
Juniper and US 98	\$1,250,000	\$0	\$1,250,000
Total	\$6,300,000	\$0	\$6,300,000

Foley's existing LOS is 0.2223 improved intersections per 10,000 VMT (eight improved intersections / (359,808 VMT / 10,000 VMT)). Based on a weighted average cost of \$900,000 per improved intersection, the improved intersections cost is \$20.01 per VMT (eight improved intersections / 359,808 VMT X \$900,000 per improved intersection).

Figure S12: Improved Intersection Level of service

Cost Factors	
Weighted Average per Intersection	\$900,000

Level-of-Service (LOS) Standards				
Existing Improved Intersections	8.0			
2021 VMT	359,808			
Improved Intersections per 10,000 VMT	0.2223			
Cost per VMT	\$20.01			

Source: Foley Engineering Department

Impact Fee Study - Plan-Based

The cost to prepare the Street Impact Fees and related Impact Fee Study equals \$39,000. Foley plans to update its study every five years. Based on this cost, proportionate share, and five-year projections of future development projections, the cost is \$0.44 per VMT.

Figure S13: Impact Fees and Impact Fee Study

Infrastructure Category	Cost	Proportionate	Share	Service Unit	5-Year Change	Cost per Service Unit
Parks and	\$20,000	Residential	100%	Population	5,447	\$3.67
Recreation	\$20,000	Nonresidential	0%	Jobs	2,322	\$0.00
Street	\$39,000	All Development	100%	VMT	88,471	\$0.44
Total	\$59,000					

STREET IMPACT FEES

Shown below, Figure S14 details the proposed Street Impact Fees. Residential fees are derived from the average weekday VMT generated per housing unit and the total cost per demand unit of \$20.45 per VMT. Nonresidential fees are derived from the average weekday VMT generated per 1,000 square feet of floor area and the total cost per demand unit of \$20.45 per VMT.

To derive the proposed fee for residential development, multiply the average weekday VMT generated per housing unit by the cost per VMT. For example, the fee for a single-family unit is \$497 (24.30 VMT per housing unit X \$20.45 per VMT).

To derive the proposed fee for nonresidential development, multiply the average weekday VMT generated per 1,000 square feet by the cost per VMT, and divide by 1,000. For example, the fee for commercial development is \$0.69 per square foot (33.71 VMT per 1,000 square feet X \$20.45 per VMT / 1,000).

Hotel and assisted living fees are assessed per room and per bed, respectively. To derive the proposed fee for hotel or assisted living development, multiply the average weekday VMT generated per demand unit by the cost per VMT. For example, the fee for hotel development is \$231 per room (11.31 VMT per room X \$20.45 per VMT).

Figure S14. Street Impact Fee Schedule

Fee Component	Cost per VMT
Improved Intersections	\$20.01
Impact Fee Study	\$0.44
Total	\$20.45

Residential Fees per Unit					
Development Type	Avg Wkdy VMT per Unit ¹	Proposed Fees			
Single Family	24.30	\$497			
Multi-Family	14.00	\$286			

Nonresidential Fees per Square Foot						
Development Type	Avg Wkdy VMT per 1,000 Sq Ft ¹	Proposed Fees				
Industrial	5.18	\$0.11				
Commercial	33.71	\$0.69				
Office & Other Services	12.84	\$0.26				
Institutional	9.33	\$0.19				
Hotel (per room)	11.31	\$231				
Assited Living (per bed)	3.43	\$70				

^{1.} See Land Use Assumptions

STREET IMPACT FEE REVENUE

Revenue projections in Figure S15 assume implementation of the proposed Street Impact Fees shown on the previous page and that development over the next 10 years is consistent with the development projections described in Appendix A. To the extent the actual rate of development either increases or decreases, there will be a corresponding change in the impact fee revenue.

Projected Street Impact Fee revenue equals \$3,710,049 over the next 10 years compared to projected growth-related capital costs of \$3,710,251. Alabama's enabling legislation for Baldwin County does not allow impact fees to exceed one percent of the estimated fair and reasonable market value of the new development after completion. The City of Foley will calculate this one-percent value for each new development as applicable. As a result, the City may be able to collect only a portion of the proposed impact fees resulting in a reduction in projected impact fee revenue.

Figure S15: Projected Street Impact Fee Revenue

Fee Component	Growth Share	Existing Share	Total
Improved Intersections	\$3,671,251	\$0	\$3,671,251
Impact Fee Study	\$39,000	\$0	\$39,000
Total	\$3,710,251	\$0	\$3,710,251

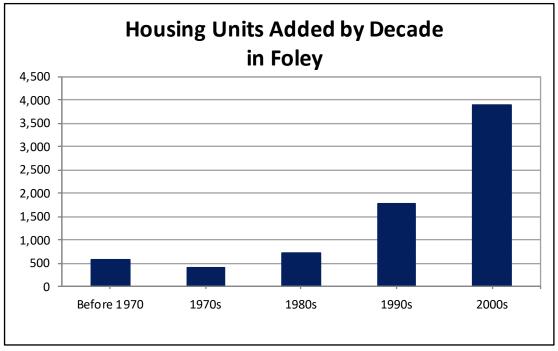
	Single Family Multi-Famil \$497 \$286		Multi-Family \$286	Industrial \$0.11	Commercial \$0.69	Office & Other \$0.26	Institutional \$0.19
		per unit	per unit	per sq ft	per sq ft	per sq ft	per sq ft
Yea	ar	Hsg Unit	Hsg Unit	KSF	KSF	KSF	KSF
Base	2021	8,780	2,339	1,193	2,638	674	1,063
Year 1	2022	9,157	2,580	1,218	2,765	676	1,093
Year 2	2023	9,534	2,821	1,244	2,898	678	1,124
Year 3	2024	9,911	3,062	1,270	3,037	680	1,156
Year 4	2025	10,288	3,303	1,297	3,183	682	1,189
Year 5	2026	10,665	3,544	1,325	3,335	684	1,222
Year 6	2027	11,042	3,785	1,353	3,495	686	1,257
Year 7	2028	11,419	4,026	1,382	3,663	688	1,293
Year 8	2029	11,796	4,267	1,410	3,839	690	1,330
Year 9	2030	12,173	4,508	1,441	4,024	692	1,367
Year 10	2031	12,550	4,749	1,471	4,217	694	1,406
10-Year I	ncrease	3,770	2,410	278	1,578	21	343
Projected	Revenue	\$1,853,376	\$682,757	\$29,088	\$1,074,788	\$5,341	\$64,699

Projected Fee Revenue	\$3,710,049
Total Expenditures	\$3,710,251
Existing Development Share	\$0

APPENDIX A: LAND USE ASSUMPTIONS

The City of Foley, Alabama, retained TischlerBise to analyze the impacts of development on its capital facilities and prepare impact fees based on that analysis. The population, housing unit, and job projections contained in this document provide the foundation for the impact fee study. To evaluate demand for growth-related infrastructure from various types of development, TischlerBise prepared documentation on demand indicators by type of housing unit, jobs and floor area by type of nonresidential development, and average weekday vehicle trip generation rates. These metrics are the service units and demand indicators used in the impact fee study.

Impact fees are based on the need for growth-related improvements, and they must be proportionate by type of land use. The demographic data and development projections are used to demonstrate proportionality and to anticipate the need for future infrastructure. These metrics are used to allocate costs of development equitably among various types of development. Demographic data reported by the U.S. Census Bureau, Esri Business Analyst, and data provided by Foley staff, are used to calculate base year estimates and annual projections. Impact fee studies typically consider a ten-year horizon, with the expectation that fees will be updated every three to five years.



RESIDENTIAL DEVELOPMENT

Shown below, Figure A1 indicates the estimated number of housing units added by decade according to data obtained from the U.S. Census Bureau. From 2000 to 2010, Foley's housing inventory increased by an average of 389 units per year.

Figure A1: Housing Units by Decade

Census 2000 Housing Units	3,468	Foley's housing stock grew by an
Census 2010 Housing Units	7,359	average of 389 housing units per year
New Housing Units 2000 to 2010	3,891	from 2000 to 2010.

Source: U.S. Census Bureau, Census 2010 Summary File 1, Census 2000 Summary File 1, 2015-2019 5-Year American Community Survey (for 1990s and earlier, adjusted to yield total units in 2000).

As shown below, Foley issued 1,853 residential building permits from 2018 through 2020, and Foley staff expect this trend to continue in the future. The residential projections used in this study assume Foley's housing inventory will grow by 618 units per year – 377 single-family units and 241 multi-family units.

Figure A2: Recent Residential Building Permits

Year	Single Family	Manufactured	Duplex	Multi-Family	Total
2018	270	10	18	410	708
2019	256	14	26	208	504
2020	571	8	2	60	641
Total	1,097	32	46	678	1,853
Average	366	11	15	226	618

Source: Foley Community Development Department

Persons Per Housing Unit

According to the U.S. Census Bureau, a household is a housing unit occupied by year-round residents. Impact fees often use per capita standards and persons per housing unit (PPHU) or persons per household (PPH) to derive proportionate share fee amounts. When PPHU is used in the fee calculations, infrastructure standards are derived using year-round population. When PPH is used in the fee calculations, the impact fee methodology assumes a higher percentage of housing units will be occupied, thus requiring seasonal or peak population to be used when deriving infrastructure standards. TischlerBise recommends that Foley assess impact fees for residential development according to the number of year-round residents per housing unit. This methodology assumes some portion of the housing stock will be vacant during the course of a year. According to the U.S. Census Bureau American Community Survey, Foley's vacancy rate was 16.04 percent in 2019.

Persons per housing unit (PPHU) calculations require data on population and the types of units by structure. The 2010 census did not obtain detailed information using a "long-form" questionnaire. Instead, the U.S. Census Bureau switched to a continuous monthly mailing of surveys, known as the American Community Survey (ACS), which has limitations due to sample-size constraints. For example, data on detached housing units are now combined with attached single units (commonly known as townhouses, which share a common sidewall, but are constructed on an individual parcel of land). For impact fees in Foley, detached stick-built units, attached units, and mobile homes are included in the "Single Family" category. Duplexes and all other structures with two or more units on an individual parcel of land are included in the "Multi-Family" category. (Note: housing unit estimates from ACS will not equal decennial census counts of units. These data are used only to derive the custom PPHU factors for each type of unit).

Figure A3 below shows the 2015-2019 American Community Survey 5-year estimates for Foley. Single-family units averaged 2.11 persons per housing unit (15,649 persons / 7,415 housing units) and multi-family units averaged 1.22 persons per housing unit (2,703 persons / 2,221 housing units). In 2019, Foley's housing stock averaged 1.90 persons per housing unit.

Figure A3: Persons per Housing Unit

Housing Type	Persons	Households	Persons per Household	Housing Units	Persons per Housing Unit	Housing Mix	Vacancy Rate
Single-Family ¹	15,649	6,460	2.42	7,415	2.11	77.0%	12.88%
Multi-Family ²	2,703	1,630	1.66	2,221	1.22	23.0%	26.61%
Total	18,352	8,090	2.27	9,636	1.90	100.0%	16.04%

Source: U.S. Census Bureau, 2015-2019 American Community Survey 5-Year Estimates.

- 1. Includes detached, attached (i.e. townhouses), and mobile home units.
- 2. Includes dwellings in structures with two or more units and Recreational Vehicles.

Current Population and Housing Units

TischlerBise estimates current housing units by combining 2020 housing unit estimates with building permit data provided by City of Foley staff. Based on estimates from the 2020 Redistricting Plan, Foley's 2020 housing stock included 10,501 housing units – 8,403 single-family housing units and 2,098 multifamily housing units. As previously mentioned, the residential projections used in this study assume Foley's housing inventory will grow by 618 units per year – 377 single-family housing units and 241 multifamily housing units. By combining the 2020 housing unit estimate of 10,501 units with average annual building permits of 618 units, Foley's 2021 housing unit estimate includes 11,119 housing units – 8,780 single-family housing units and 2,339 multi-family housing units.

Based on estimates from the 2020 Redistricting Plan, Foley's 2020 population included 25,245 persons. TischlerBise estimates current population by applying the PPHU factor in Figure A3 to the increase in housing units since 2020. Foley's single-family population increased by 795 persons (377 single-family housing units X 2.11 persons per housing unit), and its multi-family population increased by 294 persons (241 multi-family housing units X 1.22 persons per housing unit). By combining the 2020 population with the population in new housing units, Foley's 2021 population estimate includes 26,334 persons (25,245 persons in 2020 + 1,089 persons in new housing units).

Projected Population and Housing Units

To project future residential development, this analysis holds the average annual increase in housing units from 2018 through 2020 constant over the 10-year impact fee study horizon. As shown in Figure A4, Foley's projected growth includes 6,180 additional housing units over the next 10 years. Applying the PPHU factors derived in Figure A3 to the projected increase in housing units results in a population increase of 10,895 persons over the next 10 years.

Figure A4: Residential Development Projections

Foley, Alabama	2021	2022	2023	2024	2025	2026	2031	10-Year
	Base Year	1	2	3	4	5	10	Increase
Population								
Single Family	21,718	22,514	23,309	24,105	24,900	25,696	29,673	7,955
Multi-Family	4,616	4,910	5,204	5,498	5,792	6,086	7,556	2,940
Total	26,334	27,424	28,513	29,603	30,692	31,782	37,229	10,895
Housing Units								
Single Family	8,780	9,157	9,534	9,911	10,288	10,665	12,550	3,770
Multi-Family	2,339	2,580	2,821	3,062	3,303	3,544	4,749	2,410
Total	11,119	11,737	12,355	12,973	13,591	14,209	17,299	6,180

NONRESIDENTIAL DEVELOPMENT

In addition to data on residential development, the calculation of impact fees requires data on nonresidential development. TischlerBise uses the term jobs to refer to employment by place of work. In Figure A5, gray shading indicates the nonresidential development prototypes used by TischlerBise to derive nonresidential floor area and average weekday vehicle trips.

The prototype for industrial development is Manufacturing (ITE 140) which generates 3.93 average weekday vehicle trip ends per 1,000 square feet of floor area and has 628 square feet of floor area per employee. Assisted living development uses Assisted Living (ITE 254) as a proxy and generates 2.60 average weekday vehicle trip ends per bed. For hotel development, the proxy is Hotel (ITE 310), and this type of development generates 8.36 average weekday vehicle trip ends per room. Institutional development uses Hospital (ITE 610) and generates 10.72 average weekday vehicle trip ends per 1,000 square feet of floor area and has 354 square feet of floor area per employee. For office & other services development, the proxy is General Office (ITE 710); it generates 9.74 average weekday vehicle trip ends per 1,000 square feet of floor area and has 337 square feet of floor area per employee. The prototype for commercial development is Shopping Center (ITE 820) which generates 37.75 average weekday vehicle trips per 1,000 square feet of floor area and has 427 square feet of floor area per employee.

Figure A5: Nonresidential Service Units per Demand Unit

ITE	Land Use / Size	Demand	Wkdy Trip Ends	Wkdy Trip Ends	Emp Per	Sq Ft
Code	Land Ose / Size	Unit	Per Dmd Unit ¹	Per Employee ¹	Dmd Unit	Per Emp
110	Light Industrial	1,000 Sq Ft	4.96	3.05	1.63	615
130	Industrial Park	1,000 Sq Ft	3.37	2.91	1.16	864
140	Manufacturing	1,000 Sq Ft	3.93	2.47	1.59	628
150	Warehousing	1,000 Sq Ft	1.74	5.05	0.34	2,902
254	Assisted Living	bed	2.60	4.24	0.61	na
310	Hotel	room	8.36	14.34	0.58	na
320	Motel	room	3.35	25.17	0.13	na
520	Elementary School	1,000 Sq Ft	19.52	21.00	0.93	1,076
610	Hospital	1,000 Sq Ft	10.72	3.79	2.83	354
620	Nursing Home	bed	3.06	2.91	1.05	na
710	General Office (average size)	1,000 Sq Ft	9.74	3.28	2.97	337
715	Single Tenant Office	1,000 Sq Ft	11.25	3.77	2.98	335
730	Government Office	1,000 Sq Ft	22.59	7.45	3.03	330
750	Office Park	1,000 Sq Ft	11.07	3.54	3.13	320
820	Shopping Center (average size)	1,000 Sq Ft	37.75	16.11	2.34	427

^{1.} Trip Generation, Institute of Transportation Engineers, 10th Edition (2017).

Current Nonresidential Floor Area and Employment

Esri Business Analyst published 2020 data on employment by industry sector for the City of Foley. To derive 2020 nonresidential floor area, TischlerBise applies ITE employment density factors shown in Figure A5 to Esri Business Analyst's 2020 employment estimate of 12,670 jobs. This results in a 2020 estimate of approximately 5.39 million square feet. To estimate 2021 employment, TischlerBise applies compound annual growth rates derived from 2015 to 2018 employment data published by the U.S. Census Bureau's OnTheMap web application to 2020 employment. From 2015 to 2018, the compound annual growth rate was 2.1 percent for industrial, 4.8 percent for commercial, 0.3 percent for office and other services, and 2.8 percent for institutional. Applying these growth rates to the 2020 employment estimates by industry sector results in a 2021 employment estimate of 13,081 jobs. Applying the ITE employment density factors to 2021 employment results in a 2021 nonresidential floor area estimate of 5.57 million square feet.

Figure A6: Current Nonresidential Floor Area and Employment

Nonresidential	2020	Percent of	Square Feet	2020 Estimated	Jobs per
Category	Jobs ¹	Total Jobs	per Job²	Floor Area ³	1,000 Sq. Ft. ²
Industrial ⁴	1,861	15%	628	1,168,708	1.59
Commercial ⁵	5,896	47%	427	2,517,592	2.34
Office & Other Service ⁶	1,993	16%	337	671,641	2.97
Institutional ⁷	2,920	23%	354	1,033,680	2.83
Total	12,670	100%		5,391,621	

- 1. Esri Business Analyst, 2020.
- 2. Trip Generation, Institute of Transportation Engineers, 10th Edition (2017).
- 3. TischlerBise calculation (2020 jobs X square feet per job).
- 4. Major sector is Manufacturing.
- 5. Major sectors are Retail; Accommodation & Food Services.
- 6. Major sectors are Professional, Scientific, & Tech Services; Other Services.
- 7. Major sectors are Health Care; Public Administration.

Nonresidential Category	2021 Jobs ¹	Percent of Total Jobs	Square Feet per Job ²	2021 Estimated Floor Area ³	Jobs per 1,000 Sq. Ft. ²
Industrial ⁴	1,900	15%	628	1,193,200	1.59
Commercial ⁵	6,179	47%	427	2,638,433	2.34
Office & Other Service ⁶	1,999	15%	337	673,663	2.97
Institutional ⁷	3,003	23%	354	1,063,062	2.82
Total	13,081	100%		5,568,358	

- 1. TischlerBise calculation (2020 jobs X 3-Year Compound Annual Growth Rate)
- 2. Trip Generation, Institute of Transportation Engineers, 10th Edition (2017).
- 3. TischlerBise calculation (2021 jobs X square feet per job).
- 4. Major sector is Manufacturing.
- 5. Major sectors are Retail; Accommodation & Food Services.
- 6. Major sectors are Professional, Scientific, & Tech Services; Other Services.
- 7. Major sectors are Health Care; Public Administration.

Projected Nonresidential Floor Area and Employment

To project future employment, TischlerBise applies compound annual growth rates derived from 2015 to 2018 employment data published by the U.S. Census Bureau's OnTheMap web application to the 2021 base year employment estimate. From 2015 to 2018, the compound annual growth rate was 2.1 percent for industrial, 4.8 percent for commercial, 0.3 percent for office and other services, and 2.8 percent for institutional. Applying these growth rates to the 2021 employment estimates by industry sector results in an increase of 5,168 jobs over the next 10 years. Applying the ITE employment density factors to projected employment growth results in an additional 2.22 million square feet of nonresidential floor area.

Figure A7: Nonresidential Development Projections

Folov Alahama	2021	2022	2023	2024	2025	2026	2031	10-Year
Foley, Alabama	Base Year	1	2	3	4	5	10	Increase
Employment								
Industrial	1,900	1,940	1,981	2,023	2,066	2,110	2,342	442
Commercial	6,179	6,476	6,786	7,112	7,454	7,811	9,875	3,696
Office & Other Services	1,999	2,005	2,011	2,017	2,023	2,029	2,060	61
Institutional	3,003	3,088	3,176	3,266	3,358	3,453	3,972	969
Total	13,081	13,509	13,954	14,418	14,901	15,403	18,249	5,168
Nonres. Floor Area (x1,000)								
Industrial	1,193	1,218	1,244	1,270	1,297	1,325	1,471	278
Commercial	2,638	2,765	2,898	3,037	3,183	3,335	4,217	1,578
Office & Other Services	674	676	678	680	682	684	694	21
Institutional	1,063	1,093	1,124	1,156	1,189	1,222	1,406	343
Total	5,568	5,752	5,944	6,143	6,351	6,567	7,788	2,219

AVERAGE WEEKDAY VEHICLE TRIPS

Vehicle trips are estimated using average weekday vehicle trip ends from the reference book, *Trip Generation*, 10th Edition, published by the Institute of Transportation Engineers (ITE) in 2017. The prototype for a single-family unit is Single Family (ITE 210), and it generates 9.44 average weekday vehicle trip ends per unit. For multi-family units, the proxy is Multifamily (ITE 221), and it generates 5.44 average weekday vehicle trip ends per unit.

The prototype for industrial development is Manufacturing (ITE 140) which generates 3.93 average weekday vehicle trip ends per 1,000 square feet of floor area. For commercial development, the prototype is Shopping Center (ITE 820) which generates 37.75 average weekday vehicle trips per 1,000 square feet of floor area. For office & other services development, the proxy is General Office (ITE 710), and it generates 9.74 average weekday vehicle trip ends per 1,000 square feet of floor area. Institutional development uses Hospital (ITE 610) and generates 10.72 average weekday vehicle trip ends per 1,000 square feet of floor area. For hotel development, the proxy is Hotel (ITE 310), and this type of development generates 8.36 average weekday vehicle trip ends per room. Assisted living development uses Assisted Living (ITE 254) as a proxy and generates 2.60 average weekday vehicle trip ends per bed.

Trip Rate Adjustments

To calculate Street Impact Fees, trip generation rates require an adjustment factor to avoid double counting each trip at both the origin and destination points. Therefore, the basic trip adjustment factor is 50 percent. As discussed further in this section, the impact fee methodology includes additional adjustments to make the fees proportionate to the infrastructure demand for particular types of development.

Commuter Trip Rate Adjustment

Residential development has a higher trip adjustment factor of 61 percent to account for commuters leaving Foley for work. According to the 2009 National Household Travel Survey (see Table 30 of Survey) weekday work trips are typically 31 percent of production trips (i.e., all out-bound trips, which are 50 percent of all trip ends). As shown in Figure A8, the U.S. Census Bureau's OnTheMap web application indicates 73 percent of resident workers traveled outside of Foley for work in 2018. In combination, these factors (0.3099 X 0.50 X 0.73 = 0.11) support the additional 11 percent allocation of trips to residential development.

Figure A8: Commuter Trip Adjustment

Trip Adjustment Factor for Commuters ¹	
Employed Residents	7,512
Residents Living and Working in Foley	2,020
Residents Commuting Outside Foley for Work	5,492
Percent Commuting out of Foley	73%
Additional Production Trips ²	11%
Residential Trip Adjustment Factor	61%

^{1.} U.S. Census Bureau, OnTheMap Application (version 6.8) and LEHD Origin-Destination Employment Statistics, 2018.

Adjustment for Pass-by Trips

The basic trip adjustment factor of 50 percent is applied to the industrial and the office and other services categories. The commercial and institutional categories have a trip factor of less than 50 percent because these types of development attract vehicles as they pass by on arterial and collector roads. For example, for an average size shopping center, the ITE (2017) indicates that on average 34 percent of the vehicles that enter are passing by on their way to some other primary destination. The remaining 66 percent of attraction trips have the shopping center as their primary destination. Because attraction trips are half of all trips, the trip adjustment factor (0.66 X 0.50) is approximately 33 percent of the trip ends.

Average Weekday Vehicle Trips

Using the current estimates of residential housing units and nonresidential square footage by type, TischlerBise applied the trip end estimates and adjustment factors to calculate the average weekday vehicle trips for existing development in Foley. TischlerBise estimates there are 100,575 average weekday vehicle trips attributable to existing development in the City of Foley.

Figure A9: Average Weekday Vehicle Trips

Development	Development	ITE	Avg Wkday	Trip	2021	2021			
Туре	Unit	Code	VTE	Adjustment	Dev Units	Veh Trips			
Single Family	HU	210	9.44	61%	8,780	50,559			
Multi-Family	HU	221	5.44	61%	2,339	7,762			
Industrial	KSF	130	3.93	50%	1,193	2,345			
Commercial	KSF	820	37.75	33%	2,638	32,868			
Office & Other Services	KSF	710	9.74	50%	674	3,281			
Institutional	KSF	610	10.72	33%	1,063	3,761			
Total									

^{2.} According to the National Household Travel Survey (2009)*, published in December 2011 (see Table 30), home-based work trips are typically 30.99 percent of "production" trips, in other words, out-bound trips (which are 50 percent of all trip ends). Also, LED OnTheMap data from 2018 indicate that 73 percent of Foley's workers travel outside the city for work. In combination, these factors $(0.3099 \times 0.50 \times 0.73 = 0.11)$ account for 11 percent of additional production trips. The total adjustment factor for residential includes attraction trips (50 percent of trip ends) plus the journey-to-work commuting adjustment (11 percent of production trips) for a total of 61 percent.

^{*}http://nhts.ornl.gov/publications.shtml; Summary of Travel Trends - Table "Daily Travel Statistics by Weekday vs. Weekend"

FUNCTIONAL POPULATION

TischlerBise recommends functional population to allocate the cost of police infrastructure to residential and nonresidential development. Functional population is similar to what the U.S. Census Bureau calls "daytime population," by accounting for people living and working in a jurisdiction, but also considers commuting patterns and time spent at home and at nonresidential locations. OnTheMap is a web-based mapping and reporting application that shows where workers are employed and where they live. It describes geographic patterns of jobs by their employment locations and residential locations as well as the connections between the two locations. OnTheMap was developed through a unique partnership between the U.S. Census Bureau and its Local Employment Dynamics (LED) partner states. OnTheMap data is used, as shown in Figure A10, to derive functional population shares for Foley.

Residents that do not work are assigned 20 hours per day to residential development and 4 hours per day to nonresidential development (annualized averages). Residents that work in Foley are assigned 14 hours to residential development. Residents that work outside Foley are assigned 14 hours to residential development. Inflow commuters are assigned 10 hours to nonresidential development. Based on Foley's 2018 functional population data, the cost allocation is 66 percent for residential development and 34 percent for nonresidential development.

Figure A10: Functional Population

		Dema	and Units in 201	18		
Residential			_		Demand	Person
	Population	18,288	\Box		Hours/Day	Hours
			₹ 5			
	Residents Not Wor	rking	10,776		20	215,520
	Employed Residen	ts	7,512	5		
				<u> </u>		
	Employed in Foley			2,020	14	28,280
	Employed outside	Foley	5,492	14	76,888	
				Reside	ential Subtotal	320,688
				Res	idential Share	66%
Nonresident	ial			Res	idential Share	66%
Nonresident	ial Non-working Resid	dents	10,776	Res	idential Share 4	43,104
Nonresident			10,776 11,925	Res		
Nonresident	Non-working Resid			Res		
Nonresident	Non-working Resid	ley		2,020		
Nonresident	Non-working Residual Jobs Located in Fo	ley ed in Foley	11,925	₽	4	43,104
Nonresident	Non-working Residues Located in Fo	ley ed in Foley	11,925	2,020 9,905	10	43,104 20,200
Nonresident	Non-working Residues Located in Fo	ley ed in Foley	11,925	2,020 9,905 Nonreside	10 10	43,104 20,200 99,050
Nonresident	Non-working Residues Located in Fo	ley ed in Foley	11,925	2,020 9,905 Nonreside	4 10 10 ential Subtotal	43,104 20,200 99,050 162,354

Source: Foley Comprehensive Plan (population), U.S. Census Bureau, OnTheMap Application and LEHD Origin-Destination Employment Statistics, Version 6.8 (employment).

DEVELOPMENT PROJECTIONS

Provided below is a summary of cumulative development projections used in the impact fee study. Base year estimates for 2021 are used in the impact fee calculations. Development projections are used to illustrate a possible future pace of demand for service units and cash flows resulting from revenues and expenditures associated with those demands.

Figure A11: Development Projections Summary

Falou Alabama	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	10-Year
Foley, Alabama	Base Year	1	2	3	4	5	6	7	8	9	10	Increase
Population												
Single Family	21,718	22,514	23,309	24,105	24,900	25,696	26,491	27,287	28,082	28,878	29,673	7,955
Multi-Family	4,616	4,910	5,204	5,498	5,792	6,086	6,380	6,674	6,968	7,262	7,556	2,940
Total	26,334	27,424	28,513	29,603	30,692	31,782	32,871	33,961	35,050	36,140	37,229	10,895
Housing Units												
Single Family	8,780	9,157	9,534	9,911	10,288	10,665	11,042	11,419	11,796	12,173	12,550	3,770
Multi-Family	2,339	2,580	2,821	3,062	3,303	3,544	3,785	4,026	4,267	4,508	4,749	2,410
Total	11,119	11,737	12,355	12,973	13,591	14,209	14,827	15,445	16,063	16,681	17,299	6,180
Employment												
Industrial	1,900	1,940	1,981	2,023	2,066	2,110	2,154	2,200	2,246	2,294	2,342	442
Commercial	6,179	6,476	6,786	7,112	7,454	7,811	8,186	8,579	8,991	9,423	9,875	3,696
Office & Other Services	1,999	2,005	2,011	2,017	2,023	2,029	2,035	2,041	2,047	2,053	2,060	61
Institutional	3,003	3,088	3,176	3,266	3,358	3,453	3,551	3,652	3,756	3,862	3,972	969
Total	13,081	13,509	13,954	14,418	14,901	15,403	15,926	16,472	17,040	17,632	18,249	5,168
Nonres. Floor Area (x1,000)												
Industrial	1,193	1,218	1,244	1,270	1,297	1,325	1,353	1,382	1,410	1,441	1,471	278
Commercial	2,638	2,765	2,898	3,037	3,183	3,335	3,495	3,663	3,839	4,024	4,217	1,578
Office & Other Services	674	676	678	680	682	684	686	688	690	692	694	21
Institutional	1,063	1,093	1,124	1,156	1,189	1,222	1,257	1,293	1,330	1,367	1,406	343
Total	5,568	5,752	5,944	6,143	6,351	6,567	6,791	7,025	7,269	7,523	7,788	2,219

Figure A12: Vehicle Trip Projections Summary

	Foley, Alabama	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	10-Year
	i diey, Alabailla	Base	1	2	3	4	5	6	7	8	9	10	Increase
	Single Family Units	8,780	9,157	9,534	9,911	10,288	10,665	11,042	11,419	11,796	12,173	12,550	3,770
ent	Multi-Family Units	2,339	2,580	2,821	3,062	3,303	3,544	3,785	4,026	4,267	4,508	4,749	2,410
mdo	Industrial KSF	1,193	1,218	1,244	1,270	1,297	1,325	1,353	1,382	1,410	1,441	1,471	278
velc	Commercial KSF	2,638	2,765	2,898	3,037	3,183	3,335	3,495	3,663	3,839	4,024	4,217	1,578
De	Office & Other Services KSF	674	676	678	680	682	684	686	688	690	692	694	21
	Institutional KSF	1,063	1,093	1,124	1,156	1,189	1,222	1,257	1,293	1,330	1,367	1,406	343
	Single-Family Trips	50,559	52,730	54,901	57,072	59,242	61,413	63,584	65,755	67,926	70,097	72,268	21,709
Frips	Multi-Family Trips	7,762	8,561	9,361	10,161	10,961	11,760	12,560	13,360	14,160	14,959	15,759	7,997
Ce -	Residential Trips	58,320	61,291	64,262	67,232	70,203	73,174	76,144	79,115	82,086	85,056	88,027	29,707
/ehicle	Industrial Trips	2,345	2,394	2,445	2,496	2,549	2,604	2,658	2,715	2,772	2,831	2,890	545
day \	Commercial Trips	32,868	34,448	36,097	37,831	39,650	41,549	43,544	45,635	47,826	50,124	52,529	19,660
ekd	Office & Other Services Trips	3,281	3,291	3,300	3,310	3,320	3,330	3,340	3,350	3,360	3,369	3,381	100
×e	Institutional Trips	3,761	3,867	3,977	4,090	4,205	4,324	4,447	4,573	4,704	4,836	4,974	1,213
Avg	Nonresidential Trips	42,254	44,000	45,819	47,728	49,725	51,807	53,989	56,273	58,661	61,161	63,774	21,519
	Total Vehicle Trips	100,575	105,291	110,081	114,960	119,928	124,981	130,133	135,388	140,747	146,217	151,801	51,226
VMT	Vehicle Miles Traveled (VMT)	359,808	377,056	394,505	412,193	430,122	448,280	466,707	485,409	504,395	523,681	543,273	183,465

APPENDIX B: LAND USE DEFINITIONS

RESIDENTIAL DEVELOPMENT

As discussed below, residential development categories are based on data from the U.S. Census Bureau, American Community Survey. Foley will collect impact fees from all new residential units. One-time impact fees are determined by site capacity (i.e., number of residential units).

Single-Family:

- 1. Single-family detached is a one-unit structure detached from any other house, that is, with open space on all four sides. Such structures are considered detached even if they have an adjoining shed or garage. A one-family house that contains a business is considered detached as long as the building has open space on all four sides.
- 2. Single-family attached (townhouse) is a one-unit structure that has one or more walls extending from ground to roof separating it from adjoining structures. In row houses (sometimes called townhouses), double houses, or houses attached to nonresidential structures, each house is a separate, attached structure if the dividing or common wall goes from ground to roof.
- 3. Mobile home includes both occupied and vacant mobile homes, to which no permanent rooms have been added, are counted in this category. Mobile homes used only for business purposes or for extra sleeping space and mobile homes for sale on a dealer's lot, at the factory, or in storage are not counted in the housing inventory.

Multi-Family:

- 1. 2+ units (duplexes and apartments) are units in structures containing two or more housing units, further categorized as units in structures with "2, 3 or 4, 5 to 9, 10 to 19, 20 to 49, and 50 or more apartments."
- 2. Boat, RV, Van, Etc. includes any living quarters occupied as a housing unit that does not fit the other categories (e.g., houseboats, railroad cars, campers, and vans). Recreational vehicles, boats, vans, railroad cars, and the like are included only if they are occupied as a current place of residence.

NONRESIDENTIAL DEVELOPMENT

The proposed general nonresidential development categories (defined below) can be used for all new construction within Foley. Nonresidential development categories represent general groups of land uses that share similar average weekday vehicle trip generation rates and employment densities (i.e., jobs per thousand square feet of floor area).

Assisted Living: Establishments primarily providing either routine general protective oversight, assistance with activities necessary for independent living to mentally or physically limited persons, or establishments providing care for persons who are unable to care for themselves. By way of example, *Assisted Living* includes assisted living facilities, nursing homes, rest homes, chronic care homes, and convalescent homes.

Commercial: Establishments primarily selling merchandise, eating/drinking places, and entertainment uses. By way of example, *Commercial* includes shopping centers, supermarkets, pharmacies, restaurants, bars, nightclubs, automobile dealerships, and movie theaters.

Hotel: A hotel is a place of lodging that provides sleeping accommodations and may include supporting facilities such as restaurants, cocktail lounges, meeting and banquet rooms or convention facilities, limited recreational facilities (pool, fitness room), and/or other retail and service shops.

Industrial: Establishments primarily engaged in the production, transportation, or storage of goods. By way of example, *Industrial* includes manufacturing plants, distribution warehouses, trucking companies, utility substations, power generation facilities, and telecommunications buildings.

Institutional: Public and quasi-public buildings providing educational, social assistance, or religious services. By way of example, *Institutional* includes schools, universities, churches, daycare facilities, hospitals, and government buildings.

Office & Other Services: Establishments providing management, administrative, professional, or business services. By way of example, *Office & Other Services* includes banks, business offices, medical offices, and veterinarian clinics.

APPENDIX C: IMPLEMENTATION AND ADMINISTRATION

Impact fees should be periodically evaluated and updated to reflect recent data – generally every three to five years. One approach is to adjust for inflation using the Engineering News Record (ENR) Construction Cost Index published by McGraw-Hill Companies. This index could be applied to the adopted impact fee schedule. If cost estimates or demand indicators change significantly, the City should update the impact fee calculations.

Fees should be spent within 10 years of when they are collected, with the expenditures limited to growth-related system improvements or debt service on growth-related infrastructure, as specified in the impact fee study. General practice is aggregate first in, first out accounting (rather than project-specific tracking) with impact fees and accrued interest maintained in a separate fund that is not comingled with other revenues. TischlerBise recommends preparation of an annual report indicating impact fee collections, expenditures, and fund balances by type of infrastructure.

CREDITS AND REIMBURSEMENTS

A general requirement that is common to impact fee methodologies is the evaluation of credits. A revenue credit may be necessary to avoid potential double payment situations arising from one-time impact fees plus on-going payment of other revenues that may also fund growth-related capital improvements. The determination of revenue credits is dependent upon the impact fee methodology used in the cost analysis.

If a developer constructs a system improvement that was included in the fee calculations, it will be necessary to either reimburse the developer or provide a credit against the fees in the area benefiting from the system improvement. Project improvements normally required as part of the development approval process are not eligible for credits or offsets against impact fees. Specific policies and procedures related to site-specific credits or developer reimbursements for system improvements should be addressed in the ordinance that establishes the City's fees.

Based on TischlerBise's experience, it is better for the City to establish a reimbursement agreement with the developer that constructs a system improvement rather than provide an impact fee credit. The latter is often more difficult to administer because it creates unique fees for specific geographic areas. The reimbursement agreement should be limited to a payback period of no more than ten years and the City should not pay interest on the outstanding balance. The developer must provide sufficient documentation of the actual cost incurred for the system improvement. The City of Foley should only agree to pay the lesser of the actual construction cost or the estimated cost used in the impact fee analysis. If the City pays more than the cost used in the fee analysis, there will be insufficient fee revenue. Reimbursement agreements should only obligate the City to reimburse developers annually according to actual fee collections from the benefiting area. The supporting documentation for each type of impact fee illustrates the types of infrastructure considered to be system improvements. Site specific credits or developer reimbursements for one type of system improvement does not negate an impact fee for other system improvements.

SERVICE AREA

The reasonableness of impact fees is determined in part by their relationship to the local government's burden to provide public facilities. The need to show a benefit usually requires communities to evaluate collection and expenditure zones for public facilities that have distinct geographic service areas. TischlerBise recommends a citywide fee for all impact fees. All improvements covered under the impact fee program are derived based on citywide demand and will provide citywide benefit.

INDEPENDENT IMPACT FEE STUDY

An applicant may submit an independent study to document unique demand indicators for a particular development. The independent study must be prepared by a professional engineer or certified planner and use the same type of input variables as those in Foley's impact fee study. For residential development, fees are based on persons per housing unit and vehicle miles traveled (VMT). For nonresidential development, fees are based on average weekday vehicle trips and VMT. The independent fee study will be reviewed by City staff and can be accepted as the basis for a unique fee calculation. If staff determines the independent fee study is not reasonable, the applicant may appeal the administrative decision to Foley's elected officials for their consideration.

APPENDIX D: ARTERIAL STREET NETWORK

Street	Lanes	Miles	Lane Miles	ADT ¹	VMT	Capacity ²	VMC
Baldwin Beach Express	4	0.37	1.48	16,179	5,986	31,100	11,507
Foley-Beach Express	4	8.75	35.00	17,932	156,905	31,100	272,125
Foley-Beach Express	4	1.33	5.32	20,831	27,705	31,100	41,363
Co Rd 28	1	0.09	0.09	2,052	185	6,150	554
9th Ave	2	0.50	1.00	4,104	2,052	12,300	6,150
Abbey Ln	2	0.23	0.46	4,104	944	12,300	2,829
Airport Dr	2	1.78	3.56	4,104	7,306	12,300	21,894
Bodenhamer Rd	2	0.11	0.22	4,104	451	12,300	1,353
Brinks Willis Rd	2	0.95	1.90	4,104	3,899	12,300	11,685
Cater Lee Way	2	0.76	1.52	4,104	3,119	12,300	9,348
Co Rd 10	2	0.13	0.26	4,104	534	12,300	1,599
Co Rd 12	2	3.08	6.16	4,104	12,641	12,300	37,884
Co Rd 20	2	0.41	0.82	7,579	3,107	12,300	5,043
Co Rd 24	2	0.50	1.00	4,104	2,052	12,300	6,150
Co Rd 28	2	0.50	1.00	4,104	2,052	12,300	6,150
Co Rd 65	2	0.15	0.30	4,104	616	12,300	1,845
Co Rd 73	2	0.07	0.14	4,104	287	12,300	861
E Azalea Av	2	1.12	2.24	4,104	4,597	12,300	13,776
E Michigan Av	2	1.21	2.42	2,554	3,090	12,300	14,883
E Peachtree Av	2	0.94	1.88	945	888	12,300	11,562
E Section Av	2	0.62	1.24	4,104	2,545	12,300	7,626
Grantham Rd	2	0.05	0.10	4,104	205	12,300	615
Hadley Rd	2	0.08	0.16	4,104	328	12,300	984
Irwin St	2	0.50	1.00	4,104	2,052	12,300	6,150
James Rd	2	0.51	1.02	4,104	2,093	12,300	6,273
Keller Rd	2	0.79	1.58	4,104	3,242	12,300	9,717
Miflin Rd	2	0.40	0.80	9,391	3,756	12,300	4,920
N Cedar St	2	2.03	4.06	2,511	5,097	12,300	24,969
N Hickory St	2	1.02	2.04	5,362	5,469	12,300	12,546
N Juniper St	2	1.38	2.76	930	1,283	12,300	16,974
N Pecan St	2	0.07	0.14	4,104	287	12,300	861
N Poplar St	2	0.54	1.08	4,104	2,216	12,300	6,642
Pecan St	2	0.13	0.26	4,104	534	12,300	1,599
Perfection Rd	2	0.11	0.22	4,104	451	12,300	1,353
S Cedar St	2	1.50	3.00	4,632	6,948	12,300	18,450
S Chestnut St	2	0.24	0.48	4,104	985	12,300	2,952
S Hickory St	2	1.69	3.38	5,362	9,062	12,300	20,787
S Juniper St	2	1.63	3.26	5,888	9,597	12,300	20,049

Street	Lanes	Miles	Lane Miles	ADT ¹	VMT	Capacity ²	VMC
S Pecan St	2	1.01	2.02	4,104	4,145	12,300	12,423
S Pine St	2	1.01	2.02	4,104	4,145	12,300	12,423
Underwood Rd	2	0.25	0.50	4,104	1,026	12,300	3,075
W Azalea Av	2	0.90	1.80	4,104	3,694	12,300	11,070
W Fern Av	2	1.27	2.54	4,104	5,213	12,300	15,621
W Michigan Av	2	0.87	1.74	6,190	5,385	12,300	10,701
W Peachtree Av	2	0.99	1.98	4,104	4,063	12,300	12,177
W Section Av	2	0.89	1.78	4,104	3,653	12,300	10,947
Co Rd 20	2	1.01	2.02	7,579	7,655	15,400	15,554
S Juniper St	2	0.87	1.74	5,888	5,123	15,400	13,398
E Azalea Av	4	0.15	0.60	8,296	1,244	24,500	3,675
E Michigan Av	4	0.06	0.24	2,554	153	24,500	1,470
Miflin Rd	4	0.22	0.88	11,106	2,443	24,500	5,390
W Azalea Av	4	0.10	0.40	8,296	830	24,500	2,450
W Michigan Av	4	0.13	0.52	6,190	805	24,500	3,185
Miflin Rd	4	1.41	5.64	11,106	15,659	31,100	43,851
Total		47.41	119.77	296,588	359,808		819,438

^{1.} Yellow shading represents ALDOT and Esri Business Analyst data. TischlerBise estimated ADT on the remaining segments based on average capacity used on segments with a similar road classification.

^{2.} Florida Department of Transportation, LOS D